SUPPORTING INFORMATION

Structural and Kinetic Changes to Small-Pore Cu-Zeolites After Hydrothermal Aging Treatments and Selective Catalytic Reduction of NOx with Ammonia

1 Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
2 Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, MC 210-41, Pasadena, CA 91125, USA
3 Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
4 Cummins Inc., 1900 McKinley Ave., MC 50183, Columbus, IN 47201, USA

*Corresponding authors. E-mail: rgounder@purdue.edu, fabio@purdue.edu
†J.D.A.-C. and I.K. contributed equally to this work.
Figure S.1. XRD patterns of H-form (dark) and Cu-form (light) AEI, CHA, and RTH zeolites. Diffraction patterns are normalized so that the maximum peak intensity in each pattern is unity.
Section S.2. Argon adsorption isotherms on H- and Cu-zeolites

Figure S.2. Ar adsorption isotherms (87 K) on H-form (filled) and Cu-form (open) RTH, CHA and AEI zeolites. Adsorption isotherms are vertically offset (CHA: 160 cm3 g$^{-1}$, RTH: 320 cm3 g$^{-1}$) for clarity.
Section S.3. 27Al MAS NMR spectra on H- and Cu-zeolites

27Al MAS NMR spectra were measured on the H- and Cu-forms of the three zeolites in this study, AEI (Figure S.3.1), CHA (Figure S.3.2) and RTH (Figure S.3.3), in order to estimate the distribution of framework (Al$_f$) and extra-framework (Al$_{ex}$) Al species. NMR lines centered at 60 ppm were present for tetrahedral Al for RTH, and a small shoulder for penta-coordinated Al1,2 was present for CHA and AEI. The tetrahedral along with distorted tetrahedral and penta-coordinated Al NMR lines were integrated together to estimate the total number of Al$_f$ species, although we recognize difficulties in quantifying Al$_f$ content from NMR spectra, because some species can reversibly change between tetrahedral and octahedral coordination depending on the conditions of the measurement$^{3-5}$, and some extraframework alumina may also contain tetrahedrally-coordinated Al1,6 The Al NMR lines centered at 0 ppm for octahedral Al were taken to reflect Al$_{ex}$ species. Spectra of H- and Cu- form zeolites show Al incorporated predominantly into tetrahedral framework positions, with Al$_f$/Al$_{tot}$ values given in Table 2 of the main text.
Figure S.3. 27Al MAS NMR spectra of H-AEI and Cu-AEI.
Figure S.3.2. 27Al MAS NMR spectra of H-CHA and Cu-CHA.
Figure S.3.3. 27Al MAS NMR spectra of H-RTH and Cu-RTH.
Section S.4. IR Spectra of H-RTH Before and After NH₃ Exposure

In situ IR experiments were performed to monitor interactions of H⁺ sites in H-RTH (Si/Al = 15) with NH₃. H-RTH was pressed into a self-supporting wafer (~0.40 g) and placed within an operando FTIR cell, using a procedure that has been described elsewhere. The sample was heated to 723 K and held for 2 h under 50 mL min⁻¹ of 10% O₂ (99.5%, Indiana Oxygen) and balance N₂ (99.999% UHP, Indiana Oxygen), and then cooled to 433 K under flow (10% O₂ and balance N₂) to give the spectra (dark traces) in Figure S.4 (OH stretching region shown in Fig. S.4.1, NH bending region shown in Fig. S.4.2). The H-RTH wafer was then saturated in flowing NH₃ (350 ppm, 3 h, 433 K), to give the spectra (light traces) in Figure S.4. After NH₃ saturation, Brønsted OH bands disappeared completely, and new IR bands for NH₄⁺ bending vibrations at 1425 cm⁻¹ appeared concomitantly. These data indicate that all H⁺ sites in H-RTH were titrated by NH₃, and that the H⁺/Alₜ value of 0.61 measured in NH₃ TPD experiments does not reflect a fraction of H⁺ sites that were inaccessible to NH₃.
Figure S.4.1. IR spectra (OH stretching region: 3400-3900 cm\(^{-1}\)) of H-RTH at 433 K before (dark) and after (light) NH\(_3\) saturation.

OH vibrations disappear after NH\(_3\) adsorption.
Figure S.4. IR spectra (N-H bending region: 1300-2500 cm$^{-1}$) of H-RTH at 433 K before (dark) and after (light) NH$_3$ saturation.
Section S.5. NH$_3$ TPD on Cu-zeolites

Figure S.5. NH$_3$ desorption rates as a function of temperature on fresh Cu-form after SCR (solid), aged Cu-form before SCR (dashed) and aged Cu-form after SCR (dotted) on CHA, RTH, and AEI zeolites.
Section S.6. References